Coal to diamond challenge

Text-only Version: Click HERE to see this thread with all of the graphics, features, and links.



cdtm
https://s5.mangadex.org/data/41c8347fc3d8b53a22f3b8a4de9e6e98/A2.jpg

https://s5.mangadex.org/data/41c8347fc3d8b53a22f3b8a4de9e6e98/A3.jpg

https://s5.mangadex.org/data/41c8347fc3d8b53a22f3b8a4de9e6e98/A4.jpg


https://s5.mangadex.org/data/41c8347fc3d8b53a22f3b8a4de9e6e98/A5.jpg


https://s5.mangadex.org/data/41c8347fc3d8b53a22f3b8a4de9e6e98/A6.jpg




Given these scans, who can turn coal into diamond?



1. Spider-Man.

2. Luke Cage.

3. Captain America.

4. Bane (Venom)

5. Thing.

6. Hourman (Miraclo)

7. Iron Fist.

StiltmanFTW
Thing should be able to do it.

cdtm
Originally posted by StiltmanFTW
Thing should be able to do it.


Isn't he class 70?



I was thinking Iron Fist.

StiltmanFTW
Still using handbooks?

Grimm crushed whole skyscrapers, condensed them with bare hands and made lethal weapons out of them laughing out loud

IF has no grip strength feats to speak of.

MrMind
Thor tried to accomplish this feat with his sphincter once. Didn't turn out well, ever since then he walks like he has shitted himself

Magnon
Lets check the numbers from the OP's scans. Time for some thermodynamics!

We would like to find out the minimum pressure p (at room temperature) under which the phase transition from graphite (colloquially, "coal"wink to diamond,

C(graphite) --> C(diamond),

takes place spontaneously. For simplicity, lets consider 12 grams of carbon since there is 1 mole of carbon, i.e. 6*10^23 C-atoms, in 12 grams of carbon (i.e. our system consists of 1 mole of carbon).

According to thermodynamics, phase changes, chemical reactions, and other physicochemical processes in these kinds of situations tend towards a state with lowest (Gibbs) free energy G.

Thus we need to evaluate the change in free energy, ΔG, when 1 mol of C undergoes the process C(graphite) --> C(diamond). If ΔG < 0 it means that the process leads to a state of smaller free energy i.e. graphite spontaneously turns into diamond.

From thermodynamic tables we can find out the ΔG for this process under normal atmospheric pressure (1 atm):

C(graphite) --> C(diamond), ΔG(1 atm) = +2.900 kJ/mol. (source: https://en.wikipedia.org/wiki/Standard_Gibbs_free_energy_of_formation )

This means that when 1 mol of C turns from "coal" into diamond at 1 atm, its free energy INCREASES by 2.9 kilojoules. Thus at 1 atm, ΔG > 0, and coal does NOT change into diamond. It turns out that when the pressure is increased the ΔG for this phase change decreases, and finally at a certain pressure p, ΔG = 0. This signifies a pressure under which graphite and diamond are at equilibrium (much like liquid water and ice are at equilibrium at 0 degrees Celsius and 1 atm). If p is increased further, then ΔG < 0 and under such pressures graphite turns into diamond spontaneously.

The lowest pressure p required to turn graphite into diamond can thus be solved from the equation ΔG(p) = 0, but for that we need to express ΔG(p) explicitly as a function of p.

The fundamental thermodynamic equation for Gibbs energy at constant T (here, T = the room temperature) tells us that:

ΔG(p) = ΔG(1 atm) + ΔV*(p - 1 atm). (1)

Here, we will set the left-hand side to 0 (since we want to find p such that ΔG(p) = 0) and ΔG(1 atm) is known from above. ΔV is the change in volume when 1 mol (i.e. 12 grams) of C turns from graphite into diamond. From literature we know the densities of gra and dia: 2.26 and 3.51 grams/cm^3, respectively (dia is denser). With the densities, we can calculate the volumes of 12 grams of gra and dia, and then calculate the desired change in volume:

ΔV = -1.891 cm^3/mol.

This means, when 1 mol of C turns from gra into dia its volume DECREASES by 1.891 cm^3 = 1.891 mL (because dia is the denser allotrope).

We now have all we need to solve the eqn. (1) for pressure p:

p = -ΔG(1 atm)/ΔV + 1 atm = 15 140 atm

Thus the pressure which changes coal into diamond spontaneously (at room temp.) needs to be LARGER than 15 140 atmospheres. The scan in the original post claims that the required pressure is 100 000 atmospheres. This is reasonable: you would need quite a bit of overpressure in order for the phase change to occur in less than "geological time-scales" (at 15 140 atm, it would take "infinitely" long).

Sound science in comics, this makes me happy! smile

And what about the strength needed to compress coal into diamond? In order to convert pressure into force, we need to know the contact surface area of the system which is being compressed by the force. For 1 mol of C contained within a closed fist, A = 10 cm^2, is a decent estimate for the contact surface between skin and the lump of coal. The force is:

F = p*A = 100000 atm * 10 cm^2 = 10^7 N (newtons).

Lets convert this into equivalent mass (under Earth's normal gravity):

m = F/g = 10^7 N / (10 m/s^2) = 10^6 kg = 1000 metric tons.

If A = 1 cm^2 instead, this would give m = 100 metric tons (consistent with what was said in the OP's scan). So, all in all, the figures in those scans were quite reasonable. smile They even got the tetrahedral diamond crystal structure on atomic level quite right. Kudos to the writer and the artist. smile

MrMind
I love your math posts Magnon they are amazing

quite surprised it only takes 100 metric tons to turn coal into diamond though, they made it into such a wow feat when superman did it pre-crisis, but all in all not all that

Magnon
Originally posted by MrMind
I love your math posts Magnon they are amazing

quite surprised it only takes 100 metric tons to turn coal into diamond though, they made it into such a wow feat when superman did it pre-crisis, but all in all not all that
Thanks. smile

The person compressing coal into diamond would need to apply 100 metric tons / square-centimeter. The total palm surface area of super-ppl is maybe around 300 cm^2. If they can produce 100 tons/cm^2 they would be able to lift approx. 300 cm^2*100 tons/cm^2 = 30000 tons.

Classic Thing was a 80-tonner, so he wouldn't be nearly strong enough (80 << 30000). Neither would classic Hulk or Thor (100+ tonners).

DarkSaint85
What would be interesting is if Grimm could do it....could he squeeze himself into diamond?

ShadowFyre
Originally posted by DarkSaint85
What would be interesting is if Grimm could do it....could he squeeze himself into diamond?

He tries every night before bed

cdtm
Originally posted by MrMind
I love your math posts Magnon they are amazing

quite surprised it only takes 100 metric tons to turn coal into diamond though, they made it into such a wow feat when superman did it pre-crisis, but all in all not all that



The impressive part was how casually he did it. Like someone would crush an animal cracker.

cdtm
Originally posted by StiltmanFTW
Still using handbooks?

Grimm crushed whole skyscrapers, condensed them with bare hands and made lethal weapons out of them laughing out loud

IF has no grip strength feats to speak of.

Iron Fist crushed a gun casually.


More impressively, he broke out of webbing, something Thing and Rogue couldn't and Hulk struggled with.

MrMind

cdtm

ShadowFyre
Originally posted by cdtm
Iron Fist produces dragons fire.

Yeah but can he hold that temp?

BrolyBlack
Superman

qwertyuiop1998
Thing or Hourman maybe

StiltmanFTW
Originally posted by Magnon
Classic Thing was a 80-tonner, so he wouldn't be nearly strong enough (80 << 30000). Neither would classic Hulk or Thor (100+ tonners).

100+ means anything from 101 to infinity.

You're assuming Thing's handbook strength number is accurate, even though he's already done "impossible" things with his grip.

FYI, Doom - who is a pussy in the strength department - has crushed a diamond to dust, lol.

Anyway, nice effort trying to figure out how much force it'd take.

Parmaniac
That was probably even the biggest diamond I've seen in comics laughing out loud

StiltmanFTW
https://66.media.tumblr.com/tumblr_luk685giR51qczibyo4_r1_250.gif

carver9
Originally posted by Magnon
Thanks. smile

The person compressing coal into diamond would need to apply 100 metric tons / square-centimeter. The total palm surface area of super-ppl is maybe around 300 cm^2. If they can produce 100 tons/cm^2 they would be able to lift approx. 300 cm^2*100 tons/cm^2 = 30000 tons.

Classic Thing was a 80-tonner, so he wouldn't be nearly strong enough (80 << 30000). Neither would classic Hulk or Thor (100+ tonners).

You're typing nonsense.

MrMind
math is nonsense in carver's eyes. color me shocked

carver9
So his entire post is about math? Is reading nonsense in your eyes?

MrMind
where are your scans of hulk defeating toba, I'm still waiting

carver9
Originally posted by MrMind
where are your scans of hulk defeating toba, I'm still waiting

When Hulk attacked him, was he able to fight back afterwards? Yes or no?

CosmicComet
Iron Fist would squeeze too hard and knock himself out.

BrolyBlack
Originally posted by carver9
So his entire post is about math? Is reading nonsense in your eyes?

When did you drop out of college?

Smurph
Cdtm in any/every thread:

Originally posted by cdtm
I was thinking Iron Fist.

StiltmanFTW
laughing out loud

Parmaniac
https://i.imgflip.com/40otr7.jpg

abhilegend
Originally posted by Smurph
Cdtm in any/every thread:
laughing out loud

Magnon

Text-only Version: Click HERE to see this thread with all of the graphics, features, and links.